Source code for seispy.distaz

import numpy as np


[docs] class distaz: """ DistAZ class Calculate the distance, azimuth and back-azimuth between two points on the Earth's surface. :param lat1: Latitude of point 1 :type lat1: float :param lon1: Longitude of point 1 :type lon1: float :param lat2: Latitude of point 2 :type lat2: float or np.ndarray :param lon2: Longitude of point 2 :type lon2: float or np.ndarray :return: An instance of DistAZ :rtype: DistAZ Subroutine to calculate the Great Circle Arc distance between two sets of geographic coordinates Equations take from Bullen, pages 154, 155 T. Owens, September 19, 1991 Sept. 25 -- fixed az and baz calculations P. Crotwell, Setember 27, 1995 Converted to c to fix annoying problem of fortran giving wrong answers if the input doesn't contain a decimal point. H. P. Crotwell, September 18, 1997 Java version for direct use in java programs. * * C. Groves, May 4, 2004 * Added enough convenience constructors to choke a horse and made public double * values use accessors so we can use this class as an immutable H.P. Crotwell, May 31, 2006 Port to python, thus adding to the great list of languages to which distaz has been ported from the origin fortran: C, Tcl, Java and now python and I vaguely remember a perl port. Long live distaz! Mijian Xu, Jan 01, 2016: Add compatibility of np.ndarray for input variables. Mijian XU, Jun 12, 2025: Update to latest numpy standards. """ def __init__(self, lat1, lon1, lat2, lon2): self.stalat = lat1 self.stalon = lon1 self.evtlat = lat2 self.evtlon = lon2 ''' if (lat1 == lat2) and (lon1 == lon2): self.delta = 0.0 self.az = 0.0 self.baz = 0.0 return ''' rad = 2. * np.pi / 360.0 ''' scolat and ecolat are the geocentric colatitudes as defined by Richter (pg. 318) Earth Flattening of 1/298.257 take from Bott (pg. 3) ''' sph = 1.0 / 298.257 scolat = np.pi / 2.0 - np.arctan((1. - sph) * (1. - sph) * np.tan(lat1 * rad)) ecolat = np.pi / 2.0 - np.arctan((1. - sph) * (1. - sph) * np.tan(lat2 * rad)) slon = lon1 * rad elon = lon2 * rad """ a - e are as defined by Bullen (pg. 154, Sec 10.2) These are defined for the pt. 1 """ a = np.sin(scolat) * np.cos(slon) b = np.sin(scolat) * np.sin(slon) c = np.cos(scolat) d = np.sin(slon) e = -np.cos(slon) g = -c * e h = c * d k = -np.sin(scolat) """ c c aa - ee are the same as a - e, except for pt. 2 c """ aa = np.sin(ecolat) * np.cos(elon) bb = np.sin(ecolat) * np.sin(elon) cc = np.cos(ecolat) dd = np.sin(elon) ee = -np.cos(elon) gg = -cc * ee hh = cc * dd kk = -np.sin(ecolat) """ c c Bullen, Sec 10.2, eqn. 4 c """ clamped_value = np.clip(a * aa + b * bb + c * cc, -1.0, 1.0) delrad = np.arccos(clamped_value) self.delta = delrad / rad """ c c Bullen, Sec 10.2, eqn 7 / eqn 8 c c pt. 1 is unprimed, so this is technically the baz c c Calculate baz this way to avoid quadrant problems c """ rhs1 = (aa - d) * (aa - d) + (bb - e) * (bb - e) + cc * cc - 2. rhs2 = (aa - g) * (aa - g) + (bb - h) * (bb - h) + (cc - k) * (cc - k) - 2. dbaz = np.arctan2(rhs1, rhs2) # dbaz_idx = np.where(dbaz < 0.0)[0] dbaz_idx = np.atleast_1d(dbaz < 0.0).nonzero()[0] if len(dbaz_idx) != 0: if np.isscalar(dbaz): dbaz += 2 * np.pi else: dbaz[dbaz_idx] += 2 * np.pi self.baz = dbaz / rad """ c c Bullen, Sec 10.2, eqn 7 / eqn 8 c c pt. 2 is unprimed, so this is technically the az c """ rhs1 = (a - dd) * (a - dd) + (b - ee) * (b - ee) + c * c - 2. rhs2 = (a - gg) * (a - gg) + (b - hh) * (b - hh) + (c - kk) * (c - kk) - 2. daz = np.arctan2(rhs1, rhs2) # daz_idx = np.where(daz < 0.0)[0] daz_idx = np.atleast_1d(dbaz < 0.0).nonzero()[0] if len(daz_idx) != 0: if np.isscalar(daz): daz += 2 * np.pi else: daz[daz_idx] += 2 * np.pi self.az = daz / rad """ c c Make sure 0.0 is always 0.0, not 360. c """ # idx = np.where(np.abs(self.baz - 360.) < .00001)[0] idx = np.atleast_1d(np.abs(self.baz - 360.) < .00001).nonzero()[0] if len(idx) != 0: if np.isscalar(self.baz): self.baz = 0.0 else: self.baz[idx] = 0.0 # idx = np.where(np.abs(self.baz) < .00001)[0] idx = np.atleast_1d(np.abs(self.baz) < .00001).nonzero()[0] if len(idx) != 0: if np.isscalar(self.baz): self.baz = 0.0 else: self.baz[idx] = 0.0 # idx = np.where(np.abs(self.az - 360.) < .00001)[0] idx = np.atleast_1d(np.abs(self.az - 360.) < .00001).nonzero()[0] if len(idx) != 0: if isinstance(self.az, float): self.az = 0.0 else: self.az[idx] = 0.0 # idx = np.where(np.abs(self.az) < .00001)[0] idx = np.atleast_1d(np.abs(self.az) < .00001).nonzero()[0] if len(idx) != 0: if isinstance(self.az, float): self.az = 0.0 else: self.az[idx] = 0.0 # la_idx = np.where(lat1 == lat2)[0] # lo_idx = np.where(lon1 == lon2)[0] la_idx = np.atleast_1d(lat1 == lat2).nonzero()[0] lo_idx = np.atleast_1d(lon1 == lon2).nonzero()[0] idx = np.intersect1d(la_idx, lo_idx) if len(idx) != 0: if isinstance(self.delta, float): self.delta = 0. else: self.delta[idx] = 0. if isinstance(self.az, float): self.az = 0. else: self.az[idx] = 0. if isinstance(self.baz, float): self.baz = 0. else: self.baz[idx] = 0.
[docs] def getDelta(self): return self.delta
[docs] def getAz(self): return self.az
[docs] def getBaz(self): return self.baz
[docs] def degreesToKilometers(self): return self.delta * 111.19